Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
Solution:
int numTrees(int n) {
vector<int> count(n+1, 0);
count[0] = 1;
count[1] = 1;
for(int i=2;i<=n;i++)
{
for(int j=0;j<i;j++)
count[i] += count[j]*count[i-j-1];
}
return count[n];
}
No comments:
Post a Comment